Message serializers

§Message Serializers

Out of the box, Lagom uses Jackson to serialize request and response messages. However, you can define custom serializers on a per service call basis, as well register a serializer for a given type for the whole service, and finally you can also customise the serialization factory used by Lagom to completely change the serializers Lagom uses when no serializer is selected.

§How Lagom selects a message serializer

Lagom uses a three step process to select a message serializer for a service call.

§Per service call message serializers

Lagom first checks whether a specific message serializer has been defined on the service call. By default, each service call defers the decision for request and response message serializers to the next level up, but a custom serializer can be specified for a specific service call request or response, using the withRequestSerializer or withResponseSerializer calls.

This can be overridden when defining the service call in the descriptor:

default Descriptor descriptor() {
  return named("orderservice").withCalls(
      pathCall("/orders/:id", this::getOrder)
          .withResponseSerializer(new MyOrderSerializer())
  );
}

§Per type message serializers

If no message serializer has been provided at the service call level, Lagom then checks whether a serializer has been registered at the service level for that type. Each service maintains a map of types to serializers for that type, and these are used as appropriate for service calls that match the types in the map.

Lagom provides a number of serializers out of the box at this level, including serializers for String and NotUsed. Custom type level serializers can also be supplied in the descriptor using the Descriptor.with method:

default Descriptor descriptor() {
  return named("orderservice").withCalls(
      pathCall("/orders/:id", this::getOrder)
  ).withMessageSerializer(Order.class, new MyOrderSerializer());
}

§Serializer factory

If neither a per service call nor per type message serializer has been found, Lagom will finally request its serializer factory for a serializer for a type. When using the defaults, this is the way Lagom will usually locate serializers for your types.

Lagom provides a SerializerFactory interface for dynamically looking up and creating serializers for types. The default implementation provided by Lagom is a Jackson serializer factory, which serializes to/from JSON. You can customize which SerializerFactory is used by supplying it to the Descriptor.with method when declaring the signature:

default Descriptor descriptor() {
  return named("orderservice").withCalls(
          pathCall("/orders/:id", this::getOrder)
  ).withSerializerFactory(new MySerializerFactory());
}

§Custom serializers

Of course, being able to configure custom serializers is meaningless if you can’t implement custom serializers. Lagom provides a MessageSerializer interface that can be used to implement custom serializers.

As we’ve already seen, there are two types of messages in Lagom, strict messages and streamed messages. For these two types of messages, Lagom provides two sub interfaces of MessageSerializer, StrictMessageSerializer and StreamedMessageSerializer, which differ primarily in the wire format that they serialize and deserialize to and from. Strict message serializers serialize and deserialize to and from ByteString, that is, they work strictly in memory, while streamed message serializers work with streams, that is, Source<ByteString, ?>.

Before we look into how to implement a serializer, there are a few basic concepts that need to be covered.

§Message protocols

Lagom has a concept of message protocols. Message protocols are expressed using the MessageProtocol type, and they have three properties, a content type, a character set, and a version. All of these properties are optional, and may or may not be used by a message serializer.

Message protocols translate roughly to HTTP Content-Type and Accept headers, with the version possibly being extracted from these if a mime type scheme that encodes the version is used, or possibly also been extracted from the URL, depending on how the service is configured.

§Content negotiation

Lagom message serializers are able to use content negotiation to decide on the right protocol to use to talk to each other. This could be used to specify different wire formats, such as JSON and XML, as well as different versions.

Lagom’s content negotiation mirrors the same capabilities as HTTP. For request messages, a client will select whatever protocol it wants to use, and so no negotiation is necessary there. The server then uses the message protocol sent by the client to decide how to deserialize the request.

For the response, the client sends a list of message protocols that it will accept, and the server should choose a protocol from that list to respond with. The client will then read the servers chosen protocol, and deserialize the response using that.

§Negotiated serializers

As a consequence of content negotiation, Lagom’s MessageSerializer doesn’t directly serialize and deserialize messages, rather it provides methods for negotiating message protocols, which return a NegotiatedSerializer or NegotiatedDeserializer. It is these negotiated classes that are actually responsible for doing the serializing and deserializing.

Let’s take a look at an example of content negotiation. Let’s say we wanted to implement a custom String MessageSerializer, that can serialize either to plain text, or to JSON, depending on what the client requests. This might be useful if you have some clients that send the text body as JSON, while others send it as plain text, perhaps one of the clients was a legacy client that did things one way, but now you want to do it the other with new clients.

Firstly, we’ll implement the NegotiatedSerializer for plain text Strings:

public class PlainTextSerializer implements MessageSerializer.NegotiatedSerializer<String, ByteString> {
  private final String charset;

  public PlainTextSerializer(String charset) {
    this.charset = charset;
  }

  @Override
  public MessageProtocol protocol() {
    return new MessageProtocol(Optional.of("text/plain"), Optional.of(charset), Optional.empty());
  }

  @Override
  public ByteString serialize(String s) throws SerializationException {
    return ByteString.fromString(s, charset);
  }
}

The protocol method returns the protocol that this serializer serializes to, and you can see that we are passing the charset that this serializer will use in the constructor. The serialize method is a straight forward conversion from String to ByteString.

Next we’ll implement the same thing but to serialize to JSON:

public class JsonTextSerializer implements MessageSerializer.NegotiatedSerializer<String, ByteString> {
  private final ObjectMapper mapper = new ObjectMapper();

  @Override
  public MessageProtocol protocol() {
    return new MessageProtocol(Optional.of("application/json"), Optional.empty(), Optional.empty());
  }

  @Override
  public ByteString serialize(String s) throws SerializationException {
    try {
      return ByteString.fromArray(mapper.writeValueAsBytes(s));
    } catch (JsonProcessingException e) {
      throw new SerializationException(e);
    }
  }
}

Here we’re using Jackson to convert the String to a JSON string.

Now let’s implement the plain text deserializer:

public class PlainTextDeserializer implements MessageSerializer.NegotiatedDeserializer<String, ByteString> {
  private final String charset;

  public PlainTextDeserializer(String charset) {
    this.charset = charset;
  }

  @Override
  public String deserialize(ByteString bytes) throws DeserializationException {
    return bytes.decodeString(charset);
  }
}

Again, we’re taking the charset as a constructor parameter and we have a straight forward conversion from ByteString to String.

Likewise, we have a JSON text deserializer:

public class JsonTextDeserializer implements MessageSerializer.NegotiatedDeserializer<String, ByteString> {
  private final ObjectMapper mapper = new ObjectMapper();

  @Override
  public String deserialize(ByteString bytes) throws DeserializationException {
    try {
      return mapper.readValue(bytes.iterator().asInputStream(), String.class);
    } catch (IOException e) {
      throw new DeserializationException(e);
    }
  }
}

Now that we’ve implemented our negotiated serializers and deserializers, it’s time to implement the MessageSerializer to do the actual protocol negotiation. Our class will extend StrictMessageSerializer:

public class TextMessageSerializer implements StrictMessageSerializer<String> {

The next thing we need to do is define the protocols that we accept. This will be used by the client to set the Accept header:

@Override
public PSequence<MessageProtocol> acceptResponseProtocols() {
  return TreePVector.from(Arrays.asList(
          new MessageProtocol().withContentType("text/plain"),
          new MessageProtocol().withContentType("application/json")
  ));
}

You can see that this serializer supports both text and json protocols. One thing to note, we’re not setting the charset in the text protocol, this is because we don’t need to be specific about it, we can accept any charset that the server chooses.

Now let’s implement the serializerForRequest method. This is used by the client to determine which serializer to use for the request. Because at this stage, no communication has happened between the server and the client, no negotiation can be done, so the client just chooses a default serializer, in this case, a utf-8 plain text serializer:

@Override
public NegotiatedSerializer<String, ByteString> serializerForRequest() {
  return new PlainTextSerializer("utf-8");
}

Next we’ll implement the deserializer method. This is used both by the server to select the deserializer for the request, and the client to select deserializer for the response. The passed in MessageProtocol is the content type that was sent with the request or response, and we need to inspect it to see if it’s a content type that we can deserialize, and return the appropriate content type:

@Override
public NegotiatedDeserializer<String, ByteString> deserializer(MessageProtocol protocol) throws UnsupportedMediaType {
  if (protocol.contentType().isPresent()) {
    if (protocol.contentType().get().equals("text/plain")) {
      return new PlainTextDeserializer(protocol.charset().orElse("utf-8"));
    } else if (protocol.contentType().get().equals("application/json")) {
      return new JsonTextDeserializer();
    } else {
      throw new UnsupportedMediaType(protocol, new MessageProtocol().withContentType("text/plain"));
    }
  } else {
    return new PlainTextDeserializer("utf-8");
  }
}

Note that if no content type was specified, we’re returning a default deserializer. We could also fail here by throwing an exception, but it’s a good idea not to do that, because some underlying transports don’t allow passing a content type with the message. For example, if this was used for a WebSocket request, web browsers don’t allow you to set the content type for a WebSocket request. By returning a default if no content type is set, we ensure maximum portability.

Next we’ll implement the serializerForResponse method. This takes the list of accepted protocols, as sent by the client, and selects one to use to serialize the response. If it can’t find one that it supports, it throws an exception. Note here that an empty value for any property means that the client is willing to accept anything, likewise if the client didn’t specify any accept protocols.

@Override
public NegotiatedSerializer<String, ByteString> serializerForResponse(List<MessageProtocol> acceptedMessageProtocols) throws NotAcceptable {
  if (acceptedMessageProtocols.isEmpty()) {
    return new PlainTextSerializer("utf-8");
  } else {
    for (MessageProtocol protocol: acceptedMessageProtocols) {
      if (protocol.contentType().isPresent()) {
        String contentType = protocol.contentType().get();
        if (contentType.equals("text/plain") || contentType.equals("text/*") || contentType.equals("*/*")) {
          return new PlainTextSerializer(protocol.charset().orElse("utf-8"));
        } else if (protocol.contentType().get().equals("application/json")) {
          return new JsonTextSerializer();
        }
      } else {
        return new PlainTextSerializer(protocol.charset().orElse("utf-8"));
      }
    }
    throw new NotAcceptable(acceptedMessageProtocols, new MessageProtocol().withContentType("text/plain"));
  }
}

§Custom serializer factories

As explained before, by default Lagom provides a Jackson serializer factory, but allows you to override it. A serializer factory is responsible for, given a type, returning a MessageSerializer for that type if it can find one.

The XML serializers example below shows an example of creating a custom serialization factory.

§Examples

§Protocol buffer serializers

Protocol buffers are a high performance language neutral alternative to JSON that are particularly a good choice for internal communication between services. Here’s an example of how you might write a MessageSerializer for an Order class generated by protoc:

public class ProtobufSerializer implements StrictMessageSerializer<Order> {
  private final NegotiatedSerializer<Order, ByteString> serializer = new NegotiatedSerializer<Order, ByteString>() {
    @Override
    public MessageProtocol protocol() {
      return new MessageProtocol().withContentType("application/octet-stream");
    }

    @Override
    public ByteString serialize(Order order) throws SerializationException {
      ByteStringBuilder builder = ByteString.createBuilder();
      order.writeTo(builder.asOutputStream());
      return builder.result();
    }
  };
  private final NegotiatedDeserializer<Order, ByteString> deserializer =
          bytes -> Order.parseFrom(bytes.iterator().asInputStream());

  @Override
  public NegotiatedSerializer<Order, ByteString> serializerForRequest() {
    return serializer;
  }

  @Override
  public NegotiatedDeserializer<Order, ByteString> deserializer(MessageProtocol protocol) throws UnsupportedMediaType {
    return deserializer;
  }

  @Override
  public NegotiatedSerializer<Order, ByteString> serializerForResponse(List<MessageProtocol> acceptedMessageProtocols) throws NotAcceptable {
    return serializer;
  }
}

Note that this MessageSerializer doesn’t attempt to do any content negotiation. In many cases, content negotiation is overkill, if you don’t need it, you don’t have to implement it.

§XML serializers

Although XML is not recommended due to its size and slow performance, there may be situations where you may need to use it, for example when interfacing with legacy systems. Here’s an example of a JAXB serializer factory:

public class JaxbSerializerFactory implements SerializerFactory {
  private final Unmarshaller unmarshaller;
  private final Marshaller marshaller;

  public JaxbSerializerFactory() {
    try {
      JAXBContext context = JAXBContext.newInstance();
      this.unmarshaller = context.createUnmarshaller();
      this.marshaller = context.createMarshaller();
    } catch (JAXBException e) {
      throw new RuntimeException(e);
    }
  }

  @Override
  public <MessageEntity> MessageSerializer<MessageEntity, ?> messageSerializerFor(Type type) {
    if (type instanceof Class) {
      Class<MessageEntity> clazz = (Class<MessageEntity>) type;

      return new StrictMessageSerializer<MessageEntity>() {

        NegotiatedSerializer<MessageEntity, ByteString> serializer = new NegotiatedSerializer<MessageEntity, ByteString>() {
          @Override
          public MessageProtocol protocol() {
            return new MessageProtocol().withContentType("application/xml");
          }
          @Override
          public ByteString serialize(MessageEntity messageEntity) throws SerializationException {
            ByteStringBuilder builder = ByteString.createBuilder();
            try {
              marshaller.marshal(messageEntity, builder.asOutputStream());
              return builder.result();
            } catch (JAXBException e) {
              throw new SerializationException(e);
            }
          }
        };

        NegotiatedDeserializer<MessageEntity, ByteString> deserializer =
            bytes -> {
              try {
                return unmarshaller.unmarshal(new StreamSource(bytes.iterator().asInputStream()),
                        clazz).getValue();
              } catch (JAXBException e) {
                throw new DeserializationException(e);
              }
            };


        @Override
        public NegotiatedSerializer<MessageEntity, ByteString> serializerForRequest() {
          return serializer;
        }

        @Override
        public NegotiatedDeserializer<MessageEntity, ByteString> deserializer(MessageProtocol protocol) throws UnsupportedMediaType {
          return deserializer;
        }

        @Override
        public NegotiatedSerializer<MessageEntity, ByteString> serializerForResponse(List<MessageProtocol> acceptedMessageProtocols) throws NotAcceptable {
          return serializer;
        }
      };
    } else {
      throw new IllegalArgumentException("JAXB does not support deserializing generic types");
    }
  }
}

Found an error in this documentation? The source code for this page can be found here. Please feel free to edit and contribute a pull request.